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ABSTRACT

The detailed study of Raman Scattering in high temperature Superconductors (HTS) via using the quantum
dynamical approach of double time temperature dependent phonon-Green’s functions. The theory of first-
order Raman scattering, second-order Raman scattering, third-order Raman scattering and electron-phonon
contribution Raman scattering is investigated for high temperature superconductors. Raman tensor, intensity of
Raman lines and differential cross-sections of various orders of scattering have been investigated. It has been
developed using almost complete Hamiltonian which consists of the contributions due to the unperturbed
phonons and electrons, anharmonic phonon fields, localized phonon fields and that of electron-phonon
interactions. The temperature and defect dependencies are discussed in detail along with the nature of
continues and line spectra. The phonon Raman scattering spectral density function has been obtained and
analyzed for high temperature superconductors.

Keywords: High Temperature Superconductors, Raman Scattering, Electron-Phonon Interaction, Green's

Function Technique, Hamiltonian

I. INTRODUCTION
Raman scattering is an excellent technique to
characterize and to basic

investigate physical

properties of high temperature superconductors.
However, many properties have not yet been
the field of high

superconductors The Raman scattering has played an

understood in temperature
important role to investigate the properties of the gap
function. A wide range of experimental techniques
can be employed to investigate this type of properties
[1, 2]. The multi-phonon interactions triggered for the
calculation of thermal, optical and elastic properties of
crystals. Mostly purposed theories are based on the
harmonic approximation [3]. We should not expect
the harmonic theory to be correct, even at the lowest
temperatures. The influence of anharmonicities does
not vanish even at the absolute temperature [4]. In
addition to anharmonicity the presence of impurity

dramatically modifies the phonon spectrum of the
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crystal and, hence, substantial changes occur in
energy dependent properties of the crystal [5]. The
interactions such as: phonon interactions in the
anharmonic crystal fields, phonon interactions in the
localized fields of crystal impurity, anharmonic
phonon interactions with localized phonons and
electron-phonon interactions. These interactions give
rise to anharmonic mode, impurity modes and
The

involvement of anharmonic and impurity effects can

impurity-anharmonicity interference modes.
cause considerable alternation in the phonon Raman
intensity. In this work, we shall amply the powerful
Green’s function technique to investigate the Raman
intensity in high temperature superconductors. This
thermodynamic Green’s function technique has
become an invaluable tool in the study of complicated
systems of interacting particles [6-8]. In case of Raman
line both the Raman shifts and line widths, and also

the scattered intensities vary with temperature.
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RAMAN SCATTERING

Raman Tensor
The intensity of linearly polarized Raman scattering per unit solid angle per unit energy is given by [9, 10]

4
<; . _
l(er) =—=5 D NuMyiq,p2(€R)E; Ef (1)
aB,y A

In above equation €, is the energy of incident radiation, egstand for the Raman shift with ez<0 corresponds
to the Stokes line, while ez>0 gives the anti-Stokes (Raman) line, Cis the speed of light, N is a unit vector of

the one linearly polarized component of the scattered light and is perpendicular to the scattering direction, and

E, and Ej(=E;)" are the positive and negative energy components of the electric vector of the incident light.

The various Raman tensors can be obtained as follows
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In obtaining Eqn.(3) and (4) we have ignored the contributions from equal time correlation functions [11]. The

correlation functions (A ; (t).. Aqj (0)..) appearing in Eqn.(4) contain the entire physics of Raman scattering.

These correlation functions can be evaluated from [12-17]

Fly ) = [ 30y @epl-ie-t)d < 5
where Fkgik)'i’ (1) = (A jy (1) Ay (1) A i (1) A1 (0) Ay 5 --(0) Ay (0)) ©)
and J éj'zj (e) are the known as spectral density functions, given by

38 (€) =2/ exp(Bh e ~DHMG () (7)

Differential Cross Section for Raman Scattering

The differential scattering cross section per unit solid angle per unit energy interval for Raman scattering is
given by [10, 18]
d%c

mZ(E/C)4 Zna Ng g2 (€)M, Mg 8)

aB,yr
where Q denotes solid angle, d € is solid angle located in the direction € and N and M are the unit
polarization vectors of the radiation. Obviously, the differential cross section depends on the Raman intensity

tensor i, 5, (€g) , which will describe the one-, two-, and three-phonon differential cross section for the Raman

scattering.
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HAMILTONIAN

In the present formulation we take the following Hamiltonian

H = Hy+Hq+Hg +Hp+Hp ©)
where H, = Z ( J{Akj A +By Bkj} (unperturbed phonon p Hamiltonian) (10a)
H, = Zeq bq by, (electron e Hamiltonian) (10b)
Hep = ngj beq By, (electron-phonon ep Hamiltonian) (10c)
ki.a.Q
kika ks
H, :Z Z V| = At Acip..... Asis > (anharmonic A Hamiltonian) (10d)
S>3k j1., ks s il s
kl 2 kl Kz o
and Hp = Z A Ao " BBy, |» (defect D Hamiltonian) (10e)
K iko io iz Jl J2

In above expressions Ay =a;+a’; =+A"; (phonon field operator) and B, =a,-a’; =—B’;; (phonon

momentum operator), b, (by)and a,; () are electron and phonon annihilation (creation) operators with wave

. kiky ks ke Ky ky Ky
vectors q and K] respectively (j is the branch index). Oy>Vs| . . e ~|,C| ~ |and D| © ~ |are electron-
hlz s hile hl2

phonon coupling coefficient, anharmonic coupling coefficients, mass difference and force constant charge

parameters, respectively. Also, Q=kj+(q.

Phonon Green’s function
Let us consider the double-time thermodynamic electron retarded Green’s functions
Gue (t,1) =<< A (1); Ac (t) >>=—6(t —t) <[A, Ac]> (11)
The Green’s functions can be evaluated with the help of equation of motion technique of quantum dynamics

via Hamiltonian (10) by adopting the technique of successive approximations and some tedious algebra. The

shift A(k,e)and line width I'(k, €) can be separated in four terms, namely; (i) electron-phonon contribution, (ii)

anharmonic contribution (iii) defect contribution and (iv) anharmonic and defect contribution. Thus

Ak, €) =AFP (k, €) + A* (k, €) + AP (k, €) + A*P (k, ) (12)
and  T(k,e) =T'*(k,e)+I°(k,&)+T*P(k,e)+I'*® (k,e) (13)
with
Tk, e) =T k,e)+I'* (k, € (14)
oA (K, €) =187 (€) D Ma(ky, Ky, k)| MulS.q Ero (€% —E2,) 45, &, 8(€” —E2,)] (15a)
kq,ko
FAA(k: €) = 48t (e) ZIVA(kll Ky, Ks, k)|21”l2[5+[3 E+B 8(62 - EEB) +38—B E_B 5(‘52 - EE[})] (15b)
k1.k2.k3
rPk,e) =T, (k,€)+ T (k,€)+ Ty (k,€) (16)
T (k,€) =8m5(€) Y [Clky k)| €f) €i28(e? — EF) (16a)
kg
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Iy (k€) =8n2(9) ) [D(ky, k)| €1 8(” - &) (16b)

kg

I (K,€) = 1281r2’;(e)Z|D(kl,k)| |C(kl,k)| e €k §(e? ekl) (16¢)
Pk, e) :r3Am (k,€) +T*A"(k, &) (17)
P37 (k,€) = 28875(€) D Vs Ky, Ky, K| Clke )Ml g S, 8% —E2,)+S ., €, 8(€? —E%,)1 € (18a)
k.k2
r“Am(k,e):?esmg(e)k kZk|\/4(kl,k2,|<3,k1)|2|C(|<1,—|<l)|2nz[s+B S, 8(? —€%)+35_5 €4 8(e? — %)l €% (18b)
=P (k,e) :1;3;%95 e eh 8(e —2E5)Ng (19)
Where q

Gia=€k1 + Ekz; eiﬂzekl + Ekz + Ekz Sia = nkz inkl; Siﬂ :1i nklnk2 +nk2nk3 inksnkl

eklekz . — k k2 k -1
Sk, Sk €k, Sk, Sk
1 2 1 2 3

In the above equations the superscripts 3A, 4A, m, f, mf, and Am stand for cubic-and quartric-
anharmonicities, mass change, force constant change, mass and force constant change and mass difference

anharmonicity interactions.

PHONONIC RAMAN SCATTERING

The Raman scattering tensor has been developed adopting the method of double-time temperature dependent
Green’s function. The correlation functions appearing in Eq.(4) are the direct consequence of double-time
thermodynamic Green’s function. To investigate the first-, second-, and third-order Raman scattering, let us
consider the evaluation of one-, two-, and third-phonon Green’s functions respectively. For this purpose we
have used the imaginary part of phonon line width. The phononic FOR-, SOR-, and TOR- Scattering has been
calculated by C. P. Painuli et al.[11], but the phonon-electron contribution to the phononic Raman scattering is
added in the present work.

First-order Phononic Raman Scattering

The first order Raman scattering can be obtained in this form

. +o0 . % iet
Icglgf'ﬁx (er) = (2/ﬂ2)kth:I<ijiJ. dtexp(—i et) Posly)m (Eﬁ )I:Od EMNkj ez(lﬁ )(%]

5 [y (€) (20)
{1e? - 2257 +a<?(t Jr2 @

The integrand is
289
[ - 225 2 +4 (5 Jr2 ey

(21)

The Raman tensor can be written in the form of diagonal and non-diagonal and these are given by

International Journal of Scientific Research in Science and Technology (www.ijsrst.com) 1505




i endeon =( 7| 2 P2 (TR [elt ) el ) (2ol ol e )

kj
kj=kj’

ol ol b ol 2

1] N

k
]
i nron = 2] 30 2§l IR [elit) i) ool ol ) 1)

k]¢kj

+a6c(5s) (1 plss ) ok e ()]

(22b)

where

(e 1
nle (i )|= =
T
After substitution of Eqn.(15) into Eqn.(8) with appropriate simplifications, one can very easily obtain the

FOR scattering differential cross section in the form

2 2 1d 2 1nd
doc _ d°oc N d?%c o)
dQd eg dQd eg dQd e,
with
q2 Ld 4
o € 1d
=|— m, mgn, Ngi 943
(de eRj (Cj aBZy:X v g Mo 1lB ay,ﬁx(eR)FOR (24a)
d2 1,nd 4
(o) = .
e :H ™, My oy (€0) (24b)
(de GRJ c a%,x 7B B lay,pr \SR/FOR

Higher-order Phononic Raman Scattering
Second-order Raman Scattering

The second-order electronic Raman tensor is given by
; i1d -Lnd (2
layp2 (€R)sor =laypn (ER)sOR + 'ag,m (€R)sor + '((xy),m (€r)sor (25)
where the first term is obtained from (15) for this processes in which two phonons contribute in inelastic

scattering processes via Fk(j3) (€) and is given by

. 18
'i’g,m(eR)SOR :(;] z POEJ;/)BX(k k>€2 (l])[ (kt)lkz +16X«kk1&.>kk1k2:|s(+)(a) (26a)
<
k1J'1,szJ'2
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i kpio
. 1 ko i~ . _
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Ky ji Kz Jo
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X = (11 j ) ( jkll_jk)é2 (T) 5 N(€xq) _m €,0=€ (ﬁ)i'é (%) and S, n(‘jg)i n('ﬁ)

The SOR cross section can be obtained in the form

d?c e\ -1.d -1nd (2
(m] :(Ej Zmymﬁnans['o{y,m (€r)sor +'a’$,m(€R)SOR +'(§y),m(€R)SOR] (27)
R /sor By

Third-order Raman Scattering

After certain simplifications the third-order Raman scattering tensor takes the form

laypn(€r)TOR = i(lx’(;,m (€Rr)ToR + ii’?fjm (€r)ToR + ig,m (€r)1orR (28)
where in the first term the first-order polarizability is involved and the second term appears due to the
fluctuations of the electronic polarizability in its third-order derivative; these terms are given by

avﬁx(eR)TOR ‘[_j z Pofly)m(k k)€2 (l])[ (kiikzkg +16X«kk1§kk1k2k3:| S2(B) (29)

kj=k7’
kj1. k3j3

g edron =[] 3 3 R () ell b e ()] Es +162na EB [ 5201 0

kj=k kg i1, k33

. 1 3)  (kikokg—ki—ko—k ~ ~ ~ ~
'gm (€r)ToR :(_} ZPOEV),BK('I e i ] 3)712[“1 Sy +1, Sy +M S3+1, S, 31)

2n) & j1i2i3 i i2 i3
k2i2.k3i3
The third-order Raman scattering cross section can also be obtained in the form
d?%c (e 4 [‘lyd -1nd -3) ]
(mj _[Ej Zmymsnanﬁ Izypn (€r)TOR Tigypa(€Rr)TOR +igypa(€R)TOR (32)
TOR apy

Electron-Phonon Contribution Raman scattering
The electron-phonon Raman scattering can be obtained from Eq.(20) via using the electron-phonon

contribution in density of states

; d -nd
lay 52 (€R)ep =lay 1 (ER)ep +|27,ﬁ/1(€R)ep (33)
where
. . A2 Eo)N
d @® (kk)y2(k Qe
|q'y,B7u (GR)ep ( J ZPOV‘/ W»( i ) ( ) [4 EZ _EZ (k)]2 (343)
kj kj Q J
nd ) (kK | (kK N(2€)Ng
i 67 (€R)ep = ( )ZF’éQm(,, Je(k)g2(¥) (34b)
c(tlazg-= ()
kj¢kj
The electron-phonon Raman scattering cross section can be written as
d’c € ) +d :nd
(mlp = (Ej aﬁzylkmymﬁ“a“p['qy,m(%)ep +igypn(€R)epl (35)
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II. CONCLUSION

The phonon Raman scattering in High temperature
superconductors can be successfully explained with
the help of present theory. It is observed that the FOR
scattering provides only one Stokes component and
one anti-Stokes component and is induced due to
processes in which fluctuations in the first order
electronic polarizability are encountered. This
scattering is governed by the defect terms only. The
Eq.(26c¢) is purely anharmonic and mainly influenced
by the temperature dependent distribution functions
A(€.,) and S (a) . The SOR spectrum simultaneously
depends on the one-phonon density of states via

i1d :1nd
density of states viai ((fy)m (er)sor The intensity of TOR

lines is also affected by the temperature. The electron-
phonon Raman scattering can be obtained via using
the electron-phonon contribution in density of states
and separated into two classes. These classes are also

temperature dependent via N(2 €5) and N, .
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