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ABSTRACT 

The detailed study of Raman Scattering in high temperature Superconductors (HTS) via using the quantum 

dynamical approach of double time temperature dependent phonon-Green’s functions. The theory of first-

order Raman scattering, second-order Raman scattering, third-order Raman scattering and electron-phonon 

contribution Raman scattering is investigated for high temperature superconductors. Raman tensor, intensity of 

Raman lines and differential cross-sections of various orders of scattering have been investigated. It has been 

developed using almost complete Hamiltonian which consists of the contributions due to the unperturbed 

phonons and electrons, anharmonic phonon fields, localized phonon fields and that of electron-phonon 

interactions. The temperature and defect dependencies are discussed in detail along with the nature of 

continues and line spectra. The phonon Raman scattering spectral density function has been obtained and 

analyzed for high temperature superconductors. 

Keywords: High Temperature Superconductors, Raman Scattering, Electron-Phonon Interaction, Green's 

Function Technique, Hamiltonian 

 

I. INTRODUCTION 

Raman scattering is an excellent technique to 

characterize and to investigate basic physical 

properties of high temperature superconductors. 

However, many properties have not yet been 

understood in the field of high temperature 

superconductors The Raman scattering has played an 

important role to investigate the properties of the gap 

function. A wide range of experimental techniques 

can be employed to investigate this type of properties 

[1, 2]. The multi-phonon interactions triggered for the 

calculation of thermal, optical and elastic properties of 

crystals. Mostly purposed theories are based on the 

harmonic approximation [3]. We should not expect 

the harmonic theory to be correct, even at the lowest 

temperatures. The influence of anharmonicities does 

not vanish even at the absolute temperature [4]. In 

addition to anharmonicity the presence of impurity 

dramatically modifies the phonon spectrum of the 

crystal and, hence, substantial changes occur in 

energy dependent properties of the crystal [5]. The 

interactions such as: phonon interactions in the 

anharmonic crystal fields, phonon interactions in the 

localized fields of crystal impurity, anharmonic 

phonon interactions with localized phonons and 

electron-phonon interactions. These interactions give 

rise to anharmonic mode, impurity modes and 

impurity-anharmonicity interference modes. The 

involvement of anharmonic and impurity effects can 

cause considerable alternation in the phonon Raman 

intensity. In this work, we shall amply the powerful 

Green’s function technique to investigate the Raman 

intensity in high temperature superconductors. This 

thermodynamic Green’s function technique has 

become an invaluable tool in the study of complicated 

systems of interacting particles [6-8]. In case of Raman 

line both the Raman shifts and line widths, and also 

the scattered intensities vary with temperature.  
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RAMAN SCATTERING 

Raman Tensor  

The intensity of linearly polarized Raman scattering per unit solid angle per unit energy is given by [9, 10]  
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In above equation 
i  is the energy of incident radiation, R stand for the Raman shift with 0R  corresponds 

to the Stokes line, while 0R  gives the anti-Stokes (Raman) line, c is the speed of light, n  is a unit vector of 

the one linearly polarized component of the scattered light and is perpendicular to the scattering direction, and

E  and *)( 



  EE  are the positive and negative energy components of the electric vector of the incident light. 

The various Raman tensors can be obtained as follows      
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In obtaining Eqn.(3) and (4) we have ignored the contributions from equal time correlation functions [11]. The 

correlation functions   )...0()...(
1111 jkjk AtA appearing in Eqn.(4) contain the entire physics of Raman scattering. 

These correlation functions can be evaluated from [12-17]   
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i

jkkjJ are the known as spectral density functions, given by 
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Differential Cross Section for Raman Scattering 

The differential scattering cross section per unit solid angle per unit energy interval for Raman scattering is 

given by [10, 18]  
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where   denotes solid angle, d  is solid angle located in the direction   and n  and m are the unit 

polarization vectors of the radiation. Obviously, the differential cross section depends on the Raman intensity 

tensor )(, Ri  , which will describe the one-, two-, and three-phonon differential cross section for the Raman 

scattering. 

 



International Journal of Scientific Research in Science and Technology (www.ijsrst.com) 

 

1504 

HAMILTONIAN 

In the present formulation we take the following Hamiltonian  

DAepep HHHHHH                                         (9) 

where    kjkjkjkj

kj

p BBAA
j

k
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In above expressions 



  kjkjkjkj AaaA (phonon field operator) and 



  kjkjkjkj BaaB  (phonon 

momentum operator), )( 
qq bb and )( 

kjkj aa  are electron and phonon annihilation (creation) operators with wave 

vectors q and kj respectively (j is the branch index). kjg ,
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D are electron-

phonon coupling coefficient, anharmonic coupling coefficients, mass difference and force constant charge 

parameters, respectively. Also, qkjQ  .  

Phonon Green’s function                      

Let us consider the double-time thermodynamic electron retarded Green’s functions  

                    ],[)()();(),( **
kkkkkk AAttitAtAttG           (11)                    

The Green’s functions can be evaluated with the help of equation of motion technique of quantum dynamics 

via Hamiltonian (10) by adopting the technique of successive approximations and some tedious algebra. The 

shift ),(  k and line width ),(  k can be separated in four terms, namely; (i) electron-phonon contribution, (ii) 

anharmonic contribution (iii) defect contribution and (iv) anharmonic and defect contribution. Thus 
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In the above equations the superscripts ,,,,4,3 mffmAA and Am  stand for cubic-and quartric- 

anharmonicities, mass change, force constant change, mass and force constant change and mass difference 

anharmonicity interactions. 

 

PHONONIC RAMAN SCATTERING 

The Raman scattering tensor has been developed adopting the method of double-time temperature dependent 

Green’s function. The correlation functions appearing in Eq.(4) are the direct consequence of double-time 

thermodynamic Green’s function. To investigate the first-, second-, and third-order Raman scattering, let us 

consider the evaluation of one-, two-, and third-phonon Green’s functions respectively. For this purpose we 

have used the imaginary part of phonon line width. The phononic FOR-, SOR-, and TOR- Scattering has been 

calculated by C. P. Painuli et al.[11], but the phonon-electron contribution to the phononic Raman scattering is 

added in the present work.   

First-order Phononic Raman Scattering 

The first order Raman scattering can be obtained in this form 
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The integrand is 
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The Raman tensor can be written in the form of diagonal and non-diagonal and these are given by 
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After substitution of Eqn.(15) into Eqn.(8) with appropriate simplifications, one can very easily obtain the 

FOR scattering differential cross section in the form 
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Higher-order Phononic Raman Scattering 

Second-order Raman Scattering 

The second-order electronic Raman tensor is given by   
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where the first term is obtained from (15) for this processes in which two phonons contribute in inelastic 

scattering processes via )(
)3(
kj and is given by 

           )(16
18

)(
)(

1

22,11

)1(

211

)1(

21

2)1(
,SOR

,1
, 






 












   SPi

jkjk
kj

kkkkkkkk

k
j

kk
jjR

d            (26a) 

                   )(16
72

)(
)(

1

22,11

,

)1(

211

)1(

21

)1(
,SOR

n,1
, 






 




















   SCPi

jkjk
jkkj

kkkkkkkk

k
j

kk

jj

kk

jjR
d              (26b) 

                


















2211

2121

2121

,

)(
1

)(
11

)2(
,SOR, )~(~)~(~

2

1
)(

jkjk

kkkk

jjjjR SnSnPi  


(2)               (26c)  

with       1
21

213

22

,11,

21

213
)1(

21




 kkk

jjj

jk
jkkj

kkk

jjjkkk
VV ;   

      222222

)(
1 ~~

)~(~

~~

)~(~
)(























k
j

k
j

SnSn
S                             



International Journal of Scientific Research in Science and Technology (www.ijsrst.com) 

 

1507 

     k
j

kk

jj

kk

jjkk CC 21

1

1

11


  ; 

]1)[exp(

1
)(~





n ;    2

2

1

1

~~~ k

j

k

j
   and    1

1

2

2

k

j

k

j
nnS      

 

The SOR cross section can be obtained in the form 
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Third-order Raman Scattering 

After certain simplifications the third-order Raman scattering tensor takes the form 
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where in the first term the first-order polarizability is involved and the second term appears due to the 

fluctuations of the electronic polarizability in its third-order derivative; these terms are given by 
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The third-order Raman scattering cross section can also be obtained in the form  
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Electron-Phonon Contribution Raman scattering   

The electron-phonon Raman scattering can be obtained from Eq.(20) via using the electron-phonon 

contribution in density of states  
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The electron-phonon Raman scattering cross section can be written as 
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II. CONCLUSION 

 

The phonon Raman scattering in High temperature 

superconductors can be successfully explained with 

the help of present theory. It is observed that the FOR 

scattering provides only one Stokes component and 

one anti-Stokes component and is induced due to 

processes in which fluctuations in the first order 

electronic polarizability are encountered. This 

scattering is governed by the defect terms only. The 

Eq.(26c) is purely anharmonic and mainly influenced 

by the temperature dependent distribution functions 

)~(~
n and )(

)(
1 


S . The SOR spectrum simultaneously 

depends on the one-phonon density of states via 

SOR
,1

, )( Ri 
d and SOR

,1
, )( Ri 

nd and two phonon 

density of states via SOR, )( Ri 
(2)  The intensity of TOR 

lines is also affected by the temperature. The electron-

phonon Raman scattering can be obtained via using 

the electron-phonon contribution in density of states 

and separated into two classes. These classes are also 

temperature dependent via )~2(~
Qn  and QN . 
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